PROF: ATMANI NAJIB: 1er BAC Sciences Mathématiques BIOF

http://www.xriadiat.com

DS3: F

PROF: ATMANI NAJIB

1er BAC Sciences Mathématiques BIOF

Devoir surveiller n°3 sur les leçons suivantes : CALCUL TRIGONOMETRIQUE et LES SUITES NUMERIQUES

Durée :2 heures (La correction voir bhttp://www.xriadiat.com)

Exercice1: (3pts): (1,5pt+1,5pt)

Montrer que : 1) $1 - \cos x + \sin x = 2 \sin \frac{x}{2} \left(\sin \frac{x}{2} + \cos \frac{x}{2} \right)$

2) si $\alpha \in \mathbb{R}$ et $\sin \alpha \neq -1$ alors : $\frac{1-\sin \alpha}{1+\sin \alpha} = \tan^2 \left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$

Exercice2: (3pts): (1,5pt+1,5pt)

Calculer: 1) $\cos \frac{7\pi}{12} \times \cos \frac{5\pi}{12}$ 2) $\sin \frac{7\pi}{12} \times \cos \frac{5\pi}{12}$

Exercice3: (1,5pt) Linéariser: $2\cos^2 x \times \sin 2x$

Exercice4: (1,5pts): Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}$: $u_n=3n^2+6n-4$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est minorée

Exercice5: (7pts): (1pt+1pt+1pt+1,5pt+1,5pt)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites définies par : $\begin{cases} u_{n+1} = \frac{1}{2} u_n - 2 \\ v_{n+1} = v_n - \frac{1}{2} u_n & \forall n \in \mathbb{N} \\ u_0 = -3 \; ; \; v_0 = 0 \end{cases}$

1) Calculer: u_1 ; v_1 u_2 ; et v_2

2) Montrer que : $u_n \ge -4$: $\forall n \in \mathbb{N}$ et que $(u_n)_{n \in \mathbb{N}}$ est décroissante

3) On pose : $a_n = u_n + 4$ et $b_n = v_n - u_n$; $\forall n \in \mathbb{N}$

a) Montrer que : $(a_n)_{n\in\mathbb{N}}$ est une suite géométrique dont en déterminera la raison et le premier terme et écrire a_n en fonction de n

b) Montrer que : $(b_n)_{n\in\mathbb{N}}$ est une suite arithmétique dont en déterminera la raison et le premier terme et écrire b_n en fonction de n

c) En déduire : u_n et v_n en fonction de n

d) Montrer que : $v_n \succ n$; $\forall n \in \mathbb{N}^*$

http://www.xriadiat.com/

PROF: ATMANI NAJIB

1

PROF: ATMANI NAJIB: 1er BAC Sciences Mathématiques BIOF

Exercice6: (4pts): (1,5pt+1pt+1,5pt)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $\begin{cases} u_{n+1} = \frac{u_n}{\sqrt{u_n+2}} & \forall n\in\mathbb{N} \\ u_0\in]-1;0[\end{cases}$

1) Montrer que $-1 \prec u_n \prec 0 \quad \forall n \in \mathbb{N}$

2) Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite strictement croissante

3) Montrer que $u_{n+1} \ge \frac{u_n}{\sqrt{u_n + 2}}$ $\forall n \in \mathbb{N}$ et en déduire que : $u_n \ge \frac{u_0}{\left(\sqrt{u_0 + 2}\right)^n}$ $\forall n \in \mathbb{N}$

PROF: ATMANI NAJIB C'est en forgeant que l'on devient forgeron: Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

